Наука и удивительное - Страница 48


К оглавлению

48

Здесь надо остановиться и подумать. Мы встретились с молекулярной структурой длиной в несколько сантиметров или метров, т. е. с объектом макроскопического размера, столь же большим, как и предметы на нашем письменном столе. А ведь это одна-единственная молекула. Конечно, она столь длинна, так как состоит из огромного числа нуклеотидов; каждая пара нуклеотидов очень мала, так же мала, как и обычная неживая молекула, длину которой мы считаем примерно равной 10 Но если выстроить в ряд 10 или 100 миллионов таких пар, то мы получим уже макроскопические размеры.

Есть известный смысл в том, что поддержание жизни требует столь длинных молекул. Мы покажем это в дальнейшем более подробно. Пока же удовлетворимся тем, что подчеркнем колоссальное число различных возможных вариантов расположения молекул в ДНК. Мы уже видели, каким огромным числом способов можно построить белковую цепь из 1000 бусинок (аминокислот), если имеется 20 типов бусинок.

В случае ДНК мы имеем только 4 типа звеньев, но всего их может быть 10—100 миллионов! Важно понять, что ограничение числа типов до 4 (вместо 20 у белков) уменьшает число возможных расположений, но не очень сильно. Это уменьшение с избытком перекрывается значительно большим числом звеньев. Вместо 20 букв мы теперь имеем только 4. Но можно записать текст, пользуясь только двумя буквами, как, например, в азбуке Морзе, где применяются только тире и точки. Конечно, для этого требуется в среднем по три или четыре знака на букву, и, следовательно 1000 сигналов будет отвечать только одной пятой части страницы. Однако в молекуле ДНК (помимо того, что имеются четыре, а не два символа) содержится от 10 до 10 ступенек, в несколько тысяч раз больше, чем в белке, что соответствует книге в 1000 или в 10 000 страниц. Поэтому число возможных способов построения молекулы ДНК так же велико, как и число возможных расположений букв (в осмысленном и бессмысленном порядке) в книге, состоящей не менее чем из 10 000 страниц!

Мы скоро увидим, что это разнообразие связано с разнообразием жизни, что расположение четырех типов пар в молекуле ДНК и есть та книга, которая говорит клетке, что ей делать и как развиваться. Остается только узнать, как прочесть эту книгу.

Химический процесс жизни

Вернемся теперь к тому, что мы назвали процессом жизни, — к росту бактериальной клетки и ее делению на две новые при погружении в питательный раствор сахара, фосфата и аммиака: Этот процесс наиболее интересен и загадочен.

Молекулы сахара и аммиака очень просты. Поэтому в бактериальной клетке должен существовать механизм, способный выполнять два процесса: во-первых, строить 20 видов аминокислот и 4 нуклеотида из сахара и аммиака и, во-вторых (этот второй этап значительно труднее), соединять аминокислоты в правильном порядке, обеспечивающем образование тысяч различных белков и точное повторение нуклеиновых кислот в процессе деления.

Первое задание — производство «бусинок» — выполняют, как мы уже упоминали, некоторые белки клетки. Эти белки обладают способностью разлагать молекулы питательного раствора после того, как они просочились сквозь оболочку, и переставлять образовавшиеся атомы так, чтобы они превратились в аминокислоты или нуклеотиды.

Второе задание — расположение бусинок в правильном порядке, обеспечивающем получение новых белков или новых нуклеиновых кислот, — выполняется при участии длинных цепей из нуклеиновых кислот.

Детали этого механизма известны не особенно хорошо. Он очень сложен и поэтому требует так много чрезвычайно сложных белков и нуклеиновых кислот. Основные принципы этого механизма были открыты только в последние два десятилетия. Мы попытаемся представить их в несколько упрощенном виде.

Для этого процесса необходимо одно — энергия. Когда образуются аминокислоты и когда они присоединяются друг к другу, нужна энергия, чтобы поставить их части на правильные места и связать их должным образом.

Рассмотрим процесс получения энергии. Молекулы сахара, находящиеся в питательном растворе, в который погружена бактерия, содержат энергию. Мы знаем, что при сжигании сахара может освободиться много энергии в виде тепла, если он превращается в углекислоту и воду. Но в данном случае тепловую энергию никак нельзя использовать, потому что она сводится к беспорядочному тепловому движению, которое нельзя применить для целеустремленного создания молекул. В гл. VI мы говорили, что специальным способом можно превратить энергию горения из тепла в энергетические квантовые состояния некоторых молекул. В клетке это осуществляют определенные специфические белки. Они способны притягивать молекулы сахара к своей поверхности. Здесь молекулу сахара вынуждают распасться на группы атомов, которые белки перестраивают так, чтобы получилась углекислота и вода. Этот процесс эквивалентен «горению». Что же происходит с энергией, освобождаемой при таком процессе? Белок притягивает к себе молекулы другого рода, которые держатся близ распадающегося сахара. Эти молекулы (всегда присутствующие в клетке) называются аденозинтрифосфатами или сокращенно АТФ. Они могут находиться в двух квантовых состояниях: одном с большей и другом с меньшей энергией — и поэтому служат хранилищами энергии, извлеченной из сахара. Как только сахар «сжигается» белком, молекулы АТФ переходят в высшее квантовое состояние. Если для молекулярного синтеза в клетке где-либо потребуется энергия, молекула АТФ направится туда и отдаст свою энергию, переходя обратно в состояние с более низкой энергией.

48