Радиоактивность — это превращение несбалансированного, неустойчивого ядра в более устойчивое, сопровождающееся испусканием электрона и нейтрино. Подобный процесс весьма загадочен. Мы не знаем ни его значения, ни его связи с другими ядерными явлениями. Идет он очень медленно. Годы, часы, даже секунды — это очень длинные промежутки времени для ядерной системы, где движение происходит исключительно быстро. Резерфорд однажды сказал, что радиоактивные превращения идут так медленно, что практически вообще не происходят! Однако они есть. Даже отдельный свободный нейтрон живет всего лишь 10 мин, если он не «встроен» в ядро. Он самопроизвольно превращается в более устойчивый протон, испуская при этом электрон и нейтрино. Но как часть нерадиоактивного ядра нейтрон столь же устойчив, как и протон.
Тепло от горения угля происходит из соединения атомов кислорода и углерода, образующих молекулу, в которой они прочно связаны друг с другом. Энергия освобождается во всех случаях соединения атомов в прочно связанную единицу. Можно ли применить тот же принцип к связям в ядре? Энергия производится при соединении нейтронов и протонов в ядра. Ядерное пламя должно существовать и быть значительно сильнее обычного пламени, так как энергии, участвующие в ядерных явлениях, в сотни тысяч раз больше энергии электронов на атомных орбитах.
Рассмотрим простой пример ядерного горения. Ядро гелия состоит из двух протонов и двух нейтрон нов, связанных ядерными силами. Ядро углерода состоит из шести протонов и шести нейтронов, которые прочно связаны друг с другом; поэтому можно представить себе, что ядро углерода — это три тесно связанных ядра гелия. Если бы можно было втиснуть три ядра гелия в такой малый объем, чтобы между ними начали действовать ядерные силы, то ядра гелия слились бы воедино, образуя ядро углерода и выделяя большую энергию. Итак, в ядерном пламени гелий сгорал бы в углерод.
Почему же гелий на Земле не горит в ядерных пламенах? В обычных условиях очень трудно заставить три ядра гелия сблизиться столь тесно. Во-первых, они окружены электронами; во-вторых, будучи заряжены положительно, они отталкивают друг друга. Только при чрезвычайно высоких температурах, порядка миллиардов градусов, электроны отрываются, а ядра получают достаточно энергии для преодоления электрического отталкивания и сталкиваются друг с другом. Такие температуры нужны, чтобы зажечь гелиевый огонь, который, однажды загоревшись, будет выделять огромные количества энергии, а его температура будет в миллионы раз выше, чем у обычного пламени. Мы полагаем в настоящее время, что в центре некоторых звезд горит такой гелиевый огонь, снабжающий звезду энергией, которую она затем излучает. Такова звезда в верхнем левом углу созвездия Ориона.
Есть и другие виды ядерного огня. Очень важно горение тяжелого водорода. Тяжелый водород — это изотоп обычного водорода. Ядро тяжелого водорода, называемое дейтроном, состоит из одного протона и одного нейтрона, связанных ядерными силами. Приведенные в тесный контакт, два дейтрона сольются, образуя плотно связанное ядро гелия из двух протонов и двух нейтронов. Итак, тяжелый водород горит, а его зола — это гелий. Для того чтобы зажечь этот ядерный огонь, тоже необходима очень высокая температура, но она не столь высока, как для гелиевого огня (два дейтрона отталкиваются друг от друга слабее, чем два ядра гелия). И действительно, человеку удалось зажечь тяжелый водород, но пока только для целей разрушения в водородной бомбе.
Наиболее важно для нас горение обычного водорода (рис. 46).
Рис. 46. Восемь стадий сгорания водорода в гелий. а — четыре протона (ядра водорода) и четыре электрона (их движение символизируют прямые линии); б — два протона сблизились, образуя на мгновение дипротон; в — один ив протонов превращается в нейтрон (светлый кружок), испуская положительный электрон и нейтрино (положительный электрон встречает отрицательный и аннигилирует в световой вспышке, см. ниже, стр. 158); г — получается дейтрон и два протона; д — вторая пара протонов образует дипротон; е — дипротон радиоактивно превращается во второй дейтрон, как и в стадии в; ж — оба дейтрона сталкиваются; з — они образуют ядро гелия; выделившаяся энергия частично излучается (ореол), частично передается другим протонам (в последнем случае электроны не показаны).
Мы полагаем, что огонь такого рода горит в недрах Солнца и поддерживает Солнце горячим, давая ему необходимую энергию. Сразу не очевидно, каким образом может гореть водород, так как его ядра — это протоны, а для образования других ядер нужны и нейтроны.
Здесь вступает в игру таинственное явление — радиоактивность. В больших массах горячего водорода иногда случается, что два ядра — два протона— сближаются и временно образуют ядро, состоящее из двух протонов, — дипротон. Это соединение не очень устойчиво, но простые вычисления показывают, что один из двух протонов изредка испытывает радиоактивное превращение в нейтрон, и тогда в качестве конечного продукта получается дейтрон (протон плюс нейтрон), который в дальнейшем сгорает в гелий, как уже описывалось.
Итак, обычный водород в больших количествах и при высоких температурах тоже сгорает, превращаясь в гелий. Этот процесс идет очень медленно, потому что дейтроны должны образоваться до того, как начнется настоящее горение. Топливо медленно поступает по каплям. Таким образом, и этот результат мы можем считать лишь благодетельным: водородный огонь в Солнце выделяет и будет выделять тепло еще в течение миллиардов лет без опасности внезапного взрыва.