Эта картина позволяет легко понять строение важной молекулы аммиака NH, в которой три водородных атома дают три связи типа «электронных близнецов», по одной с каждым выступом. Электроны водородных атомов сливаются с электронами выступов, и получается структура, изображенная на рис. 30, б, где ядра водорода сидят на кончиках выступов азота.
Атом углерода особенно приспособлен к образованию молекул. Он имеет шесть электронов, расположенных следующим образом: два электрона находятся близко от ядра и образуют маленькую округлую конфигурацию, остальные четыре могут располагаться симметричным образом, причем каждый дает радиальный выступ, направленный от центра; концы этих выступов расположены по углам правильного тетраэдра (рис. 31, а).
Рис. 31. Атом углерода с четырьмя электронными выступами, направленными по углам правильного тетраэдра (а), молекула метана СН (б) и ее схематическое представление (в). Каждый электронный выступ углеродного атома сливается с электроном водорода и образует связь типа «электронные близнецы». Темный квадрат — ядро углерода, маленькие кружки — ядра водорода. Направления связей «близнецы» показаны на (в) отрезками прямых.
Полученная картина позволяет нам понять расположение атомов в молекуле метана СН, состоящей из одного атома углерода и четырех атомов водорода. Метан является главной составляющей светильного газа. Электроны водородных атомов сливаются с четырьмя выступами в связи типа «близнецы», образуя структуру с ядром углерода в центре и четырьмя протонами по углам тетраэдра (рис. 31, б).
Другая важная молекула, в которую входит углерод, — это двуокись углерода, состоящая из одного атома углерода и двух атомов кислорода. Здесь все четыре выступа слегка изогнуты; два входят в качестве «затычек» в один атом кислорода, остальные два — в другой. В результате получается вытянутая структура из одного углеродного атома и двух кислородных по бокам (рис. 32).
Рис. 32. Молекула двуокиси углерода СO. Четыре выступа углерода «затыкают» дырки в кислородных атомах. На схеме связи типа «дыра и затычка» показаны волнистыми линиями.
Углеродный атом со своими четырьмя выступами может давать нескончаемый ряд молекул. Это объясняет, почему на Земле так широко распространены соединения углерода и почему они играют столь важную роль в живой материи. Рассмотрим некоторые соединения углерода. Простейшее из них — метан (рис. 33) с одним водородом на каждом выступе.
Рис. 33. Схематические изображения молекул углеводородов. Квадратики — атомы углерода, маленькие кружки— атомы водорода, прямые соединительные линии — связи типа «электронные близнецы».
Можно построить и молекулу из двух атомов углерода и шести атомов водорода. Здесь все связи типа «близнецы». Эта молекула называется этаном. Тот же принцип построения можно продолжить (см. рис. 33), и мы получим ряд молекул, называемых углеводородами: пропан с тремя атомами углерода, бутан с четырьмя и т. д. Эта структура, подобная цепи, может иметь любую длину. Короткие молекулы — это газы, более длинные — жидкости и очень длинные — твердые тела. Они служат горючим в виде газа, нефти или парафина, и мы увидим далее, почему они здесь хороши. Углеводородные цепи очень важны и для нашего питания, если они оканчиваются характерной группировкой атомов, называемой карбоксильной группой (рис. 34).
Рис. 34. Схематическое изображение молекул жирных кислот. Длинный углеводород с карбоксильной группой на правом конце. Карбоксильная группа, СООН, состоит из одного атома углерода, двух атомов кислорода и одного атома водорода, соединенных связями типа «дыра и затычка». Квадратики — атомы углерода, большие кружки — атомы кислорода, маленькие кружки — атомы водорода. Прямые линии — связи типа «электронные близнецы», волнистые — типа «дыра и затычка».
Эти цепи называются жирными кислотами, входящими в состав животного жира.
Другие характерные углеродные структуры — это молекулы спиртов, показанные на рис. 35.
Рис. 35. Молекула спирта CHOH. Квадратики — атомы углерода, большие кружки — атомы кислорода, маленькие кружки — атомы водорода; прямые линии — связи типа «электронные близнецы», волнистые — типа «дыра и затычка».
Здесь связи с кислородом образованы по типу «дыры и затычки».
Еще одна важная группа молекул с длинными цепями — это углеводы. Их цепи подобны углеводородным, но к каждому звену цепи присоединен кислород. Он, как всегда, соединяется по типу «дыры и затычки». Простейший углевод — глюкоза, один из видов сахара (рис. 36).
Рис. 36. Сахар. Молекула глюкозы СНО.
Целлюлоза — также углевод, но с очень длинной цепью. Она встречается в больших количествах в древесине и в других растительных структурах.
Теперь мы переходим к рассмотрению наиболее важной группы молекул — аминокислот, служащих кирпичиками, из которых построена почти вся живая материя. На рис. 37 показан общий принцип построения таких структур.