Наука и удивительное - Страница 29


К оглавлению

29

На основе этого нового понимания природы мы можем понять три замечательных свойства атома, перечисленные в конце предыдущей главы. Устойчивость атомов обусловлена тем, что для перехода от простейшей картины к более сложной необходимо сообщить им значительное количество энергии. Пока количество сообщаемой атому энергии меньше указанного, сам атом остается в наинизшей конфигурации, которая, таким образом, отвечает наибольшей устойчивости. Тождественность атомов обусловлена тем, что волновые картины всегда одинаковы и определяются способом ограничения волны в пространстве. Один атом натрия тождествен другому потому, что во всех атомах электронная волна ограничена теми же условиями, т. е. притяжением ядра и электрическим действием других электронов в атоме. Тождественность двух атомов золота обусловлена тем, что одинаковое число электронов связано одним и тем же зарядом в центре, и поэтому эти электроны совершают одинаковые волновые движения. Наконец, воспроизводимость, т. е. способность возвращения к исходной форме после воздействия, как раз совпадает с той, которую и следует ожидать для случая волновых явлений, обладающих устойчивостью. При восстановлении исходных условий колебания электрона снова должны происходить так же, как и до воздействия, поскольку они однозначно определяются условиями, при которых движется электрон, и совершенно не зависят от того, что происходило ранее. Наблюдаемые конфигурации вообще не зависят от предыстории атома; мы можем разрушить атом, удаляя несколько электронов, или деформировать его, конденсируя наше вещество до твердого состояния (как это делалось в примере с натрием в предыдущей главе), но, как только атом вернется в исходные условия, электронные волны примут ту же форму, какую они имели вначале. Существует только одна конфигурация с наименьшей частотой (или энергией).

Замечательно, что мы на самом деле нашли в мире атомов то, что Пифагор и Кеплер тщетно искали в движении планет. Они полагали, что Земля и другие планеты движутся по особым орбитам, единственно возможным для каждой планеты и определенным каким-то основным принципом, не зависящим от частной судьбы и предыстории нашей планетной системы. Такой принцип отсутствует в движении планет, но он существует в движении атомных электронов это волновой принцип. Мы вспомним здесь пифагорейскую гармонию мира: квантовые состояния атома имеют предопределенные конфигурации и частоты. Каждый атом водорода во Вселенной задевает одну и ту же струну, колебания которой определяются набором характеристических частот. Здесь «гармония сфер» вновь появляется в мире атомов, но на этот раз под нею понимаются колебательные явления в стоячих электронных волнах (рис. 26).

Рис. 26. Гармония сфер по Кеплеру.

Световые кванты

Зернистая структура света. Мы узнали, что электроны и другие атомные частицы проявляют волновые свойства. Пучки частиц ведут себя иногда так же, как и волны. Было показано, что это свойство лежит в основе квантового поведения атомов. В ходе исследований оказалось, что подобная двойственность свойственна не только частицам. Световые волны иногда ведут себя так, как если бы они были частицами.

Все данные о распространении света показывают, что световой луч — это колебания, образующие непрерывную электромагнитную волну. Но когда изучается действие света на вещество, наблюдаются некоторые неожиданные явления, которые, как нам кажется, противоречат представлению о непрерывности светового потока. Что же происходит при падении света на вещество? Если объект, на который падает свет, прозрачен, как, например, оконное стекло, то свет частично отражается и частично проходит сквозь него. Если же этот объект непрозрачен (кусок угля) или частично прозрачен (цветное стекло), то большая часть света и не проходит сквозь него, и не отражается, как бы исчезая в объекте. Так как свет есть форма энергии, то он может исчезнуть, только передавая каким-либо способом свою энергию веществу. Такое его исчезновение называется поглощением света.

Энергия поглощенного света должна проявиться в какой-нибудь другой форме. Когда солнечный свет поглощается нашей кожей, мы чувствуем тепло. При поглощении света некоторыми металлами его энергия часто передается электронам; последние получают иногда так много энергии, что покидают металл. Этот эффект называется фотоэлектрическим эффектом; мы используем его на практике при преобразовании световых импульсов в электрические.

Энергию, переданную веществу при поглощении света, можно измерить с большой точностью. Эти измерения дали в высшей степени неожиданный результат; оказалось, что световая энергия может поглощаться только порциями определенной величины; доля такой порции никогда не поглощается. Такие световые единицы, или порции, называются световыми квантами, или фотонами. Если дело идет о действии света на вещество, то мы можем сравнить световой луч с потоком снарядов. В каждом снаряде содержится одно и то же количество взрывчатого вещества. Когда снаряд попадает в объект, то его действие определяется количеством взрывчатого вещества. Более сильное освещение означает большее число таких же взрывов, но не более сильные взрывы.

При фотоэлектрическом эффекте каждый квант, попадающий в металл, заставляет электрон вылетать из металла. Энергия вылетающего электрона служит мерой величины кванта (мерой количества взрывчатого вещества в каждом снаряде). Число вылетающих электронов служит мерой интенсивности светового пучка.

29